Msh2-dependent DNA repair mitigates a unique susceptibility of B cell progenitors to c-Myc-induced lymphomas.
نویسندگان
چکیده
C-Myc is one of the most common targets of genetic alterations in human cancers. Although overexpression of c-Myc in the B cell compartment predisposes to lymphomas, secondary mutations are required for disease manifestation. In this article, we show that genetic deficiencies causing arrested B cell development and accumulation of B cell progenitors lead to accelerated lymphomagenesis in Emu c-myc transgenic mice. This result suggests that B cell progenitors are more prone than their mature counterparts to developing secondary oncogenic lesions that complement c-Myc in promoting transformation. To investigate the nature of these oncogenic lesions, we examined Emu c-myc mice deficient in mismatch repair function. We report that Msh2(-/-) Emu c-myc and Msh2(G674A/G674A) Emu c-myc mice rapidly succumb to pro-B cell stage lymphomas, indicating that Msh2-dependent mismatch repair function actively suppresses c-Myc-associated oncogenesis during early B cell development.
منابع مشابه
Mismatch repair deficient hematopoietic stem cells are preleukemic stem cells
Whereas transformation events in hematopoietic malignancies may occur at different developmental stages, the initial mutation originates in hematopoietic stem cells (HSCs), creating a preleukemic stem cell (PLSC). Subsequent mutations at either stem cell or progenitor cell levels transform the PLSC into lymphoma/leukemia initiating cells (LIC). Thymic lymphomas have been thought to develop from...
متن کاملRole of MUTYH and MSH2 in the control of oxidative DNA damage, genetic instability, and tumorigenesis.
Mismatch repair is the major pathway controlling genetic stability by removing mispairs caused by faulty replication and/or mismatches containing oxidized bases. Thus, inactivation of the Msh2 mismatch repair gene is associated with a mutator phenotype and increased cancer susceptibility. The base excision repair gene Mutyh is also involved in the maintenance of genomic integrity by repairing p...
متن کاملOncogenic transformation in the absence of Xrcc4 targets peripheral B cells that have undergone editing and switching
Nonhomologous end-joining (NHEJ) repairs DNA double-strand breaks (DSBs) during V(D)J recombination in developing lymphocytes and during immunoglobulin (Ig) heavy chain (IgH) class switch recombination (CSR) in peripheral B lymphocytes. We now show that CD21-cre-mediated deletion of the Xrcc4 NHEJ gene in p53-deficient peripheral B cells leads to recurrent surface Ig-negative B lymphomas ("CXP ...
متن کاملNon-tumor cells from an MSH2-null individual show altered cell cycle effects post-UVB.
The multi-functionality of the DNA mismatch repair (MMR) proteins has been demonstrated by their role in regulation of the cell cycle and apoptosis, as well as DNA repair. Using a unique MSH2-/- non-tumor human lymphoblastoid cell line we show that MMR facilitates G2/M arrest after UVB-induced DNA damage. Deficiency in MSH2 leads to a decrease in the induction of G2/M cell cycle checkpoint foll...
متن کاملCharacterization of the c-MYC-regulated transcriptome by SAGE: identification and analysis of c-MYC target genes.
To identify target genes of the oncogenic transcription factor c-MYC, serial analysis of gene expression (SAGE) was performed after adenoviral expression of c-MYC in primary human umbilical vein endothelial cells: 216 different SAGE tags, corresponding to unique mRNAs, were induced, whereas 260 tags were repressed after c-MYC expression (P < 0.05). The induction of 53 genes was confirmed by usi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 44 شماره
صفحات -
تاریخ انتشار 2009